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ABSTRACT

This study evaluates forecast vertical thermodynamic profiles and derived thermodynamic parameters from

two regional/convection-allowing model pairs, the North American Mesoscale Forecast System and the

North American Mesoscale Nest model pair and the Rapid Refresh and High Resolution Rapid Refresh

model pair, in warm-season, thunderstorm-supporting environments. Differences in bias and mean absolute

error between the regional and convection-allowing models in each of the two pairs, while often statistically

significant, are practically small for the variables, parameters, and vertical levels considered, such that the

smaller-scale variability resolved by convection-allowing models does not degrade their forecast skill. Model

biases shared by the regional and convection-allowing models in each pair are documented, particularly the

substantial cool and moist biases in the planetary boundary layer arising from the Mellor–Yamada–Janjić

planetary boundary layer parameterization used by the North American Mesoscale model and the Nest

version as well as themiddle-troposphericmoist bias shared by theRapidRefresh andHighResolutionRapid

Refresh models. Bias and mean absolute errors typically have larger magnitudes in the evening, when

buoyancy is a significant contributor to turbulent vertical mixing, than in the morning. Vertical thermody-

namic profile biases extend over a deep vertical layer in the western United States given strong sensible

heating of the underlying surface. The results suggest that convection-allowingmodels can fulfill the use cases

typically and historicallymet by regionalmodels in operations at forecast entities such as the StormPrediction

Center, a fruitful finding given the proposed elimination of regional models with the Next-Generation Global

Prediction System initiative.

1. Introduction

Forecasters at the Storm Prediction Center (SPC) and

other private/public forecast entities extensively use

model-derived vertical profiles of temperature, mois-

ture, and wind to help predict when, where, and whether

thunderstorms will develop and, if they do form, their

potential severity and hazards (e.g., tornadoes, hail,

wind, and heavy rain). At the SPC, output from regional

models, here defined as limited-area models with hori-

zontal grid spacing of 10–40 km, are typically used to

derive forecast vertical profiles and provide fore-

casters with a conceptual understanding of the meso- to

synoptic-scale environment in which thunderstorms

may form and evolve. Though regional models must

use a deep cumulus parameterization to represent

thunderstorms, their historically higher resolution and

comparative timeliness relative to global models have

fostered their extensive use in SPC operations since the

1990s. Global models also suffer from other shortcom-

ings that further limit their forecast utility. For example,

vertical profiles available to SPC that are derived from

the European Centre for Medium-Range Weather
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Forecasts’s global model are limited tomandatory levels

only. Further, the National Centers for Environmental

Prediction’s Global Forecast System (Environmental

Modeling Center 2016) has been known to forecast

overly deep turbulent vertical mixing during the warm

season in the conterminous United States (e.g., Weiss

et al. 2015).

In recent years, convection-allowing models (CAMs)

with sufficiently fine horizontal grid spacing to be able

to crudely resolve thunderstorms (Dx # 4km) have

become operational (e.g., supported 24/7, routinely up-

dated in a timely manner, and widely available to fore-

casters). CAMs allow for the explicit prediction of

storm mode (e.g., linear versus discrete; Fowle and

Roebber 2003; Done et al. 2004; Weisman et al. 2008)

and, through the extraction of surrogate storm attributes

or use of postprocessing or parameterizations, approxi-

mations of severity (e.g., Kain et al. 2010; Sobash et al.

2011, 2016a,b; Gallo et al. 2016; Adams-Selin and

Ziegler 2016; Gagne et al. 2017). In this sense, CAMs

provide additional explicit storm information that

forecasters can use to refine the conceptual model for the

event established by their assessment of the larger-scale

and mesoscale environments.

In addition to being able to crudely resolve thunder-

storms, CAMs are also able to crudely resolve meso-g-

to meso-b-scale variability in the preinitiation and

near-storm environments. One example of such vari-

ability is manifest through horizontal convective rolls

in the daytime planetary boundary layer (e.g., Malkus

and Riehl 1964; LeMone 1973). Observations in pre-

convective environments indicate that substantial var-

iability in lower-tropospheric vertical thermodynamic

profile structure and derived thermodynamic stability

parameters exists across the several-kilometer wave-

length of a single horizontal convective roll (e.g.,

Weckwerth et al. 1996). In the representative example in

Fig. 1, CAM-derived vertical thermodynamic profiles

located less than 10km apart differ in 2-m dewpoint

temperature by 2.28C, surface-based convective avail-

able potential energy by 920 J kg21, and surface-based

convective inhibition by 63 J kg21, all consistent with

observations (e.g., Fig. 9 in Weckwerth et al. 1996). Al-

though this variability exists in nature and is important for

convection initiation (Weckwerth et al. 1999; Weckwerth

and Parsons 2006; Arnott et al. 2006) and storm-scale

processes (e.g., Nowotarski et al. 2015), it occurs on scales

with limited predictability (e.g., Lorenz 1969; Madaus

and Hakim 2016). Further, point variability inherent to

vertical profiles from CAMs may not be representative

of the larger-scale environment of interest.

To date, there has been limited formal evaluation

of vertical thermodynamic profiles and derived

thermodynamic parameters from convection-allowing

and regional models over uniform samples. Studies

that evaluated vertical thermodynamic profile, derived

thermodynamic profile, and/or related feature forecasts

from both regional and convection-allowing models

over consistent samples (Coniglio et al. 2013; Coffer

et al. 2013; Clark et al. 2015) generally compared oper-

ational regional model forecasts against experimental or

quasi-operational CAM forecasts that used different

dynamical cores, initializations, and/or physical param-

eterizations. Other studies that evaluatedCAM-forecast

vertical thermodynamic profiles and derived thermo-

dynamic parameters (e.g., Cohen et al. 2015, 2017;

Burlingame et al. 2017; Kain et al. 2017; Nevius and

Evans 2018) generally did not concurrently evaluate

regional model performance. Furthermore, although

model performance evaluations are routinely performed

by operational modeling centers to evaluate model

updates (e.g., Alexander et al. 2017), these do not al-

ways include detailed examination of vertical thermo-

dynamic profiles (particularly outside of the mandatory

levels) or derived thermodynamic parameters, nor do

they generally concurrently evaluate distinct modeling

systems.

This study is motivated by a simple question: can op-

erational CAMs satisfy all thunderstorm-related SPC

use cases, namely predicting the larger-scale and me-

soscale environments in which thunderstorms may form

and, if they form, their mode and severity? The focus of

this work lies with the thunderstorm environment: how

skillful are operational CAMs compared to their closely

related (e.g., using a nearly identical configuration

apart from horizontal grid spacing and cumulus para-

meterization) operational parent regional model coun-

terparts in predicting vertical thermodynamic profiles

and derived thermodynamic parameters in known

thunderstorm-supporting environments? This research

tests the hypothesis that CAMs are equally skillful to

regional models with making such predictions. Under-

lying this hypothesis is an expectation that meso-b- to

meso-g-scale variability resolved by CAMs will average

to zero over a sufficiently large sample and a hope that

more firmly entering the modeling terra incognita

(Wyngaard 2004) alone will not degrade model skill.

The remainder of this manuscript is structured as

follows. Section 2 documents the methods used in this

study, including details about the regional and convection-

allowing models evaluated, the observed cases that

compose the verification sample, and the verification

metrics used. Results, including breakdowns by model

pair, forecast lead time, time of day, geographic loca-

tion, and the observed thermodynamic environment, are

presented in section 3. A brief summary of the major
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findings and a discussion of their implications for oper-

ational forecasters and model developers are presented

in section 4.

2. Methodology

a. Model selection and configuration

Vertical thermodynamic profiles and derived thermo-

dynamic parameters are evaluated for two closely related

operational regional and convection-allowing model

pairs: the North American Mesoscale Forecast System

(NAM; e.g., Janjić and Gall 2012; Environmental

Modeling Center 2017 and references therein) model

and its conterminous U.S. convection-allowing nest

(NAM Nest), and the Rapid Refresh (RAP; Benjamin

et al. 2016) and High Resolution Rapid Refresh

(HRRR; Smith et al. 2008, Benjamin et al. 2016)models.

These selections are made to leverage operational guid-

ance actively used by forecasters while minimizing the

differences between the considered models.

Configurations of the NAM and NAM Nest as appli-

cable during the period considered in this study (May

2017; section 2b) are documented by the Environmental

Modeling Center (2017) and references therein. Com-

mon configuration aspects are summarized in Table 1.

The NAM uses a horizontal grid spacing of 12 km with

60 hybrid sigma-pressure vertical levels over a domain

covering most of the western Northern Hemisphere,

whereas the NAM Nest uses a finer horizontal grid

spacing (3 km) over a domain encompassing only the

conterminous United States, southern Canada, northern

Mexico, and adjacent waters. Deep and shallow cumulus

are parameterized in the NAM by the Betts–Miller–

Janjić deep and shallow cumulus parameterization

FIG. 1. (a) RAP 3-h model forecast, valid 2100 UTC 31 May 2018, of 2-m dewpoint temperature (8F; shaded)
across 338–348N and 988–998W (north-central Texas). (b) As in (a), but from the HRRR model. The open circle

(33.48N, 98.588W) and triangle (33.48N, 98.488W) depict the locations of the (c) HRRR forecast skew T–logp

diagrams. Insets in (c) depict selected parameters for an ascending surface-based parcel (light blue curves) at each

location, and the forecast temperature and dewpoint temperature vertical profiles are depicted by the solid red and

dark blue lines, respectively.
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(Janjić 1994), whereas no cumulus parameterization is

used by the NAM Nest. Initial conditions for both

models are drawn from a partially cycled (hourly over a

6-h period) hybrid ensemble–three-dimensional varia-

tional data assimilation system (Wang 2010); however,

assimilation is performed on each of the model domains,

such that the NAM Nest initialization at a given time is

not just a downscaled NAM initialization. NAM lateral

boundary conditions are provided from the 6-h old

Global Forecast Systemmodel forecast and are updated

every 3 h; NAM Nest lateral boundary conditions are

provided from the current 12-km NAM forecast and are

updated every model time step.

Configurations of the RAP (version 3) and HRRR

(version 2) applicable during the period considered in

this study are documented by Benjamin et al. (2016).

Common configuration aspects are summarized in

Table 1. The RAP uses a horizontal grid spacing of ap-

proximately 13 km with 50 terrain-following sigma ver-

tical levels over a domain that covers most of the

western Northern Hemisphere; the HRRR uses a finer

horizontal grid spacing (3 km) over a domain encom-

passing the conterminous United States, far southern

Canada, far northern Mexico, and adjacent waters.

Deep and shallow cumulus are parameterized in the

RAP by the scale-aware Grell and Freitas (2014) pa-

rameterization, whereas no cumulus parameterization is

used by the HRRR. RAP initial conditions are drawn

from a partially cycled (hourly over a 6–18-h period

starting at 0300 and 1500 UTC daily) hybrid ensemble–

three-dimensional variational data assimilation system

(Wang 2010) and digital filter initialization (Peckham

et al. 2016). The HRRR is initialized from the 1-h-prior

RAP analysis, with the first hour used as a preforecast

period intended to assimilate radar reflectivity and se-

lected other observations every 15min on the 3-kmmodel

grid. RAP lateral boundary conditions are obtained from

the most-recent Global Forecast Systemmodel forecast,

whereas HRRR lateral boundary conditions are pro-

vided from the current RAP forecast; both are updated

every 3h.

b. Sounding selection and processing

Modeled vertical thermodynamic profiles and de-

rived thermodynamic parameters from the NAM/

NAMNest and RAP/HRRRmodel pairs are evaluated

against routine 0000 and 1200 UTC rawinsonde ob-

servations from the conterminous United States dur-

ing the period 3–31 May 2017. Though rawinsonde

observations at other times (e.g., 1800 UTC) exist, the

number of these (;50) is too small to allow for robust

evaluation of model performance for these observa-

tions. Despite some shortcomings (e.g., sensor re-

sponse times in environments characterized by sharp

vertical variations in meteorological fields), rawin-

sonde observations are believed to be the best-

available ‘‘truth,’’ particularly above the surface. Only

model analyses and forecasts from the 0000 and

1200 UTC forecast cycles, which include routine ra-

winsonde observations in their initial conditions (as

described in Benjamin et al. 2004, 2016), are verified.

Since the focus of this study is on the short range (e.g., in

the time frame of a Storm Prediction Center day 1

outlook), this results in verification at three forecast

times (0, 11, and 23h) for the NAM and NAM Nest

and two forecast times (0 and 11h) for the RAP and

HRRR. The choice of 11 and 23h follows Coniglio et al.

(2013) and is motivated by the relative proximity of the

rawinsonde release time to these times. The period

3–31 May 2017 is selected as representative of early

warm-season thermodynamic environments, or those

in which buoyancy exerts a substantial influence on

vertical turbulent mixing within the daytime planetary

boundary layer.

TABLE 1. Commonmodel configuration aspects between the NAM and NAMNest (center column) and between RAP and HRRR (right

column) model pairs.

NAM and NAM Nest RAP and HRRR

Dynamical core Nonhydrostatic multiscale model on the

B grid (Janjić and Gall 2012)

Advanced Research version of the

Weather Research and

Forecasting Model, version 3.6

(Skamarock et al. 2008)

Planetary boundary

layer parameterization

MYJ (Janjić 2001) MYNN (Nakanishi and Niino

2004, 2009; Benjamin et al. 2016)

Microphysics

parameterization

Ferrier–Aligo (Aligo et al. 2018) Aerosol aware (Thompson and

Eidhammer 2014)

Shortwave and longwave

radiation

parameterization

Rapid Radiative Transfer Model

(Mlawer et al. 1997; tuned specifically

for the NAM)

Rapid Radiative Transfer Model

for General Circulation Models

(Iacono et al. 2008)

Land surface model Noah (Ek et al. 2003) Rapid Update Cycle (Smirnova

et al. 2016)
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Prior to analysis, the full dataset of all 0000 and

1200 UTC rawinsonde observations from all contermi-

nous U.S. sounding locations is reduced in size (filtered)

based on rawinsonde location (or, more precisely,

thermodynamic environment) and precipitation occur-

rence at the location. First, only those observations lo-

cated in thunderstorm-supporting environments are

retained. This is done to focus on one class of environ-

ments of importance to forecasters and is the result of

an expectation that forecast characteristics will not be

identical to those in more stable (e.g., postfrontal and/

or strongly subsiding) environments. This classification

is based on the Storm Prediction Center day 1 convec-

tive outlook ‘‘general thunderstorm’’ area from the

0600 UTC forecast issuance valid for the period from

1200 UTC on that day to 1200 UTC the next day (the

‘‘convective day’’). This forecast represents a synthesis

of available model guidance, as modified by forecaster

assessment and expertise, and is meant to identify a 10%

probability of thunderstorms occurring within 12mi

(;19km) of a location at some point during the con-

vective day. An example of this filtering for the first case

in the dataset is depicted in Fig. 2a.

Next, observed and model-derived profiles are ex-

cluded based upon whether precipitation was present

within the 1–3 h prior to the time of the profile. This is

done to remove cases in which precipitation is occur-

ring or has recently occurred, and thus has substan-

tially modified the local vertical thermodynamic profile

compared to the preconvective environment, from the

evaluation sample. Observed profiles are excluded if

there is at least 1mm of precipitation in any one of the

FIG. 2. (a) SPC day 1 convective outlook, issued 0600 UTC 3 May 2017 for the period

1200 UTC 3 May–1200 UTC 4 May 2017. Rawinsonde sites located in any of the shaded

categorical risk areas are denoted by black dots with their three-letter site identifier listed

beneath the dot. (b) Number of rawinsonde observations by site taken between 1200 UTC

3 May and 0000 UTC 1 Jun 2017, located within a given day’s SPC day 1 convective outlook,

and not experiencing$1mmprecipitationwithin any of the 3 h prior to observation time. The

1058W and 878W meridians are indicated by dashed gray lines and separate the western,

central, and eastern U.S. rawinsonde locations for later data partitioning.
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3 h prior to the observation release time within a 40-km

radius of the observation location. This methodology

closely follows Coniglio et al. (2013) and results in a

sample of 910 observations, the geographic distribution

of which is depicted in Fig. 2b. Due to data availability

limitations, forecast profiles at 11 and 23 h are excluded

if there is any precipitation in the 1 h prior to forecast

time at the grid point nearest the observation location.

An observation is excluded from the evaluation for a

given model pair if precipitation is forecast by either

model in the pair; this ensures a uniform sample at each

forecast time. The resulting sample sizes are 755, 698,

and 775 for the 11-h NAM/NAM Nest, 23-h NAM/

NAM Nest, and 11-h RAP/HRRR, respectively.

As alluded to earlier in this section, both forecast

vertical thermodynamic profiles and derived thermo-

dynamic parameters are evaluated against observations.

For the former, vertical profiles of temperature (8C)
and dewpoint temperature (8C) are evaluated. Poten-

tial temperature and specific humidity exhibit similar

performance characteristics (not shown) and are not

included in the present evaluation. The derived ther-

modynamic parameters considered include convective

available potential energy (CAPE), convective inhibi-

tion (CIN), lifted condensation level (LCL), and level of

free convection (LFC), each for three lifted parcels:

surface based, most unstable (defined as the parcel in

the lowest 300hPa above ground level with the highest

value of equivalent potential temperature), and mixed

layer (defined as the parcel with the average atmo-

spheric properties of the lowest 100 hPa above ground

level). As themost-unstable lifted parcel originates from

the surface in approximately two-thirds of the most-

unstable parcels considered, the most-unstable param-

eter composites are limited to observed profiles in which

the most-unstable CAPE exceeds surface-based CAPE

(i.e., cases with elevated instability that is larger than

surface-based instability). Further, note that the ob-

served and both forecast profiles within a given model

pair and at a given forecast time must have nonzero

CAPE (and thus an LFC) for a given parcel to be in-

cluded in that parameter’s evaluation.

Observed and forecast vertical thermodynamic profiles

and derived thermodynamic parameters are processed

using the National Center Sounding and Hodograph

Analysis and Research Program (N-SHARP; Hart and

Korotky 1991, with more recently updated information

available at https://www.spc.noaa.gov/exper/soundings/

help/index.html). Because the pressure altitude at which

rawinsonde observations originate varies between obser-

vation locations from approximately 1000 hPa in the

eastern United States to approximately 850 hPa

in the Intermountain West, all processed vertical

thermodynamic profiles are subsequently interpolated

onto a common grid between 0 and 5km above ground

level with a vertical grid spacing of 100m. The interpo-

lated profiles are used only for vertical thermodynamic

profile evaluation; derived thermodynamic parameters

are obtained exclusively from the N-SHARP-processed

datasets.

c. Verification statistics

The primary verification measures used in this study

are bias (or mean error; model minus observations) and

mean absolute error (MAE; the mean of the absolute

error values). For vertical thermodynamic profiles, bias

and MAE are calculated at each altitude on the inter-

polated grid; the root-mean-square error, which penal-

izes large errors more than doesMAE, is also calculated

but provides similar qualitative insight to MAE (not

shown) and is thus not included. For each variable (and

altitude, for the vertical thermodynamic profiles) con-

sidered, the two-tailed, nonparametricWilcoxon signed-

rank test (Wilcoxon 1945; Wilks 2011, section 5.3.1) is

used to test whether the paired model bias distributions

are significantly different from each other to $95%

confidence.

3. Results

a. Vertical thermodynamic profiles

1) GENERAL OVERVIEW

The full-sample bias and MAE results for the NAM

and NAM Nest at 0, 11, and 23h and the RAP and

HRRR at 0 and 11h are depicted in Figs. 3 and 4, re-

spectively. Temperature bias and MAE are generally

small (,18C) at all altitudes and lead times for all

models considered. Error distributions are narrow, with

similar width between the convection-allowing and re-

gional models in each model pair. By contrast, dewpoint

temperature biases are nonzero, with differences in the

vertical bias profiles between the model pairs. Dewpoint

temperature MAE is increasingly large with both in-

creasing altitude and forecast lead time for all models.

Dewpoint temperature error distributions are substan-

tially wider than for temperature, with similar widths

between the regional and convection-allowingmodels in

each model pair at most altitudes and lead times. For

both fields, bias is consistent in sign, and both bias and

MAE grow in magnitude, from model initialization to

later forecast times. The comparatively large dewpoint

temperature bias and MAE are particularly important

to keep inmind as CAPEmagnitude (for any considered

lifted parcel) is approximately twice as sensitive to
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dewpoint temperature variability as to temperature

variability.

The preceding paragraph highlights three features

meriting further mention: comparatively narrow error

distributions for temperature versus dewpoint temper-

ature, an increasingly large dewpoint temperature

MAE with height, and maintenance of the general bias

and MAE structures (i.e., bias signs and bias/MAE

vertical profile shapes) from model initialization

through to later forecast times. It is hypothesized that

the narrower temperature error distributions result

primarily from the smaller assumed rawinsonde tem-

perature observation errors (instrument precision, ob-

servation representativeness, and retrieval algorithm

uncertainty, where applicable) in each model’s data as-

similation system (Hu et al. 2017). Next, the increasingly

large dewpoint temperature MAE with height is be-

lieved to primarily result from errors in model analyses

and forecasts of sharp vertical moisture gradients atop

the planetary boundary layer (Fig. 5). Broadly, such

errors can be classified as magnitude errors (Fig. 5a)

and/or vertical displacement errors (Fig. 5b). Finally, the

persistence of the bias and MAE structures from model

initialization to later forecast times is believed to result

at least in part from the partial cycling (described in

section 2a; in essence, each model uses the previous

forecast as its first guess for the updated analysis) used to

generate eachmodel’s initial conditions; as a result, like-

signed model biases can be present not just in the model

forecast but also at the initialization time.

In addition to the overall characteristics summarized

above, distinct structures to bias and MAE for tempera-

ture and dewpoint temperature exist for the NAM/NAM

Nest pair as compared to the RAP/HRRR pair. For

example, below 1.5 km AGL, both the NAM and NAM

Nest exhibit a large positive (i.e., moist) dewpoint

temperature and small negative (i.e., cool) temperature

bias at all verification times, the magnitude of which

increases with time (Fig. 3). This is likely a result of the

well-known afternoon to-evening undermixing (i.e., too

shallow depth of turbulent vertical mixing in the plan-

etary boundary layer) bias of the MYJ planetary

boundary layer parameterization in warm-season envi-

ronments (e.g., Hu et al. 2010; Coniglio et al. 2013; Clark

et al. 2015). Atop the composite planetary boundary

layer, between 1.5 and 4km AGL, NAM forecasts at

FIG. 3. (a) Vertical profiles of sample-mean bias (8C; dashed lines; defined as model minus observations) and MAE (8C; solid lines)

between 0 and 5 km AGL for NAM and NAM Nest 0-h temperature (red and pink lines, respectively) and dewpoint temperature (dark

blue and light blue lines, respectively) analyses. Shading depicts the interquartile ranges of the error distributions for each variable and

model. Solid red and blue dots indicate vertical levels at which the temperature and dewpoint temperature error distributions, re-

spectively, between the NAM and NAM Nest are significantly different to at least 95% confidence, as assessed using the two-tailed,

nonparametricWilcoxon signed-rank test. The number of observations contributing to each sample is depicted above each panel. (b)As in

(a), but for 11-h forecasts. (c) As in (a), but for 23-h forecasts.
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11 and 23h maintain a small moist bias while the NAM

Nest forecasts are near zero to slightly dry biased

(Figs. 3b,c). However, the NAM forecasts have a slightly

smaller MAE over this layer, as the smaller NAM Nest

biases are associated with a wider error distribution on

the negative tail.

Likewise, distinct structures to bias and MAE for

temperature and dewpoint temperature exist for the

RAP/HRRR pair as compared to the NAM/NAM Nest

pair. After model initialization, a small warm bias with

largest values near the surface develops in the first 11 h

in both the RAP and HRRR (Fig. 4). The warm bias

is smaller in the HRRR than in the RAP, but the cor-

responding HRRR MAE is only smaller in the lowest

0.5 km AGL. Both models are also dry biased in the

surface layer and slightly moist biased between the

surface and 1.5 kmAGL (Fig. 4). The near-surface warm

bias is not consistent with previous investigations of

the performance of the Mellor–Yamada–Nakanishi–

Niino (MYNN) planetary boundary layer parame-

terization in warm-season environments, though the

lower-tropospheric moist bias is roughly consistent with

the results of such studies (Coniglio et al. 2013; Clark

et al. 2015; Burlingame et al. 2017). That said, it should

be noted that the MYNN version used by the RAP and

HRRR is substantially modified as compared to that

used in earlier studies, with the modifications intended

to prevent negative turbulent kinetic energy, improve

the mixing-length formulation, and couple parameter-

ized shallow cumulus clouds to shortwave and longwave

radiation parameterizations (Benjamin et al. 2016, their

appendix B), and the results are generally consistent

with the RAP version 3 evaluations of Alexander et al.

(2017). Finally, both the RAP and HRRR are associ-

ated with large moist biases at and above 3km AGL at

both times, with smaller bias and MAE for the HRRR

above 4km AGL at 11h (Fig. 4b). As shown later, the

large moist biases are found primarily in the western

United States.

2) VARIATION BY VERIFICATION TIME,
LOCATION, AND THERMODYNAMIC

ENVIRONMENT

Additional insight regarding model performance can

be gained by partitioning the data. In this study, three

such partitions are considered: verification time (0000 vs

1200 UTC), geographic region (western, central, and

eastern United States; Fig. 2), and thermodynamic en-

vironment (e.g., buoyancy magnitude). For simplicity,

and given the general consistency in the results at each

time considered, the results presented in this section

focus on the 11-h forecast time.

When stratifying by verification time, the 0000 and

1200 UTC samples for each model are broadly consis-

tent with their respective full-period samples (cf. Figs. 3, 4,

and 6). In general, biases and MAEs are larger

at 0000 UTC, when turbulent vertical mixing is driven

by both buoyancy and vertical wind shear, than at

1200UTC, when vertical wind shear is the near-exclusive

contributor to turbulent vertical mixing. The under-

mixing bias of the NAM and NAM Nest forecasts is ev-

ident primarily at 0000 UTC, particularly in the NAM

FIG. 4. As in Figs. 3a,b, but for the RAP (temperature in red, dewpoint temperature in dark blue) and HRRR

(temperature in pink, dewpoint temperature in light blue) models.
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Nest (Fig. 6a), likely the result of the local-closure (i.e.,

using known quantities only at adjacent vertical grid

points to parameterize turbulent vertical mixing) MYJ

planetary boundary layer parameterization. It is also at

0000 UTC where the NAM’s smaller dewpoint temper-

ature MAE in the 1.5–4km AGL layer is particularly

evident (Fig. 6a). For the RAP and the HRRR,

0000 UTC is also the time at which the slightly smaller

dewpoint temperature biases below 1.5km AGL and

above 4km AGL for the HRRR are found (Fig. 6c). The

smaller warm temperature bias in the HRRR relative

to the RAP is primarily the result of observations at

1200 UTC (cf. Figs. 6c,d). The physical interpretation of

these last three insights is not clear, however.

When stratifying by region, the central and, to lesser

extent, eastern United States samples for each model

are broadly consistent with their respective full-period

samples (cf. Figs. 3, 4, and 7a–d), although some differ-

ences from the full-period samples are noted (e.g., a dry

bias between 1 and 2.5 kmAGL in the NAMNest in the

eastern United States, smaller moist biases above 3 km

AGL in the RAP and HRRR in the eastern and central

United States). Substantially different results are ob-

tained for the western United States samples, however

(cf. Figs. 3, 4, and 7e,f). For the NAM and NAM Nest,

cool and moist biases are particularly large and extend

over a much deeper vertical layer in the western United

States. Given the observation distribution in this region

(Fig. 2), this is speculated to result from deeper, more

intense mixing over the elevated terrain of the In-

termountain West that is not well forecast by either

model. The comparatively large moist bias also con-

tributes to a comparatively large dewpoint temperature

MAE below 2km AGL for both models (Fig. 7e). For

the RAP and the HRRR, the near-surface warm bias is

largest in the western United States, though the bias

remains smaller in the HRRR as compared to the RAP.

More significantly, the largemoist bias above 3 kmAGL

FIG. 5. (a) Skew T–logp diagram for the observed 0000 UTC 13 May 2017 Albuquerque, NM (ABQ), temper-

ature (8C; rightmost solid black line) and dewpoint temperature (8C; leftmost solid black line). Overlaid are the

1200 UTC 12 May 2017 NAM (temperature in red, dewpoint temperature in dark blue) and NAM Nest (tem-

perature in pink, dewpoint temperature in light blue) 11-h forecast temperature and dewpoint temperature at the

model grid point closest to ABQ. (b) As in (a), but for the RAP (temperature in red, dewpoint temperature in dark

blue) and HRRR (temperature in pink, dewpoint temperature in light blue) model pair.
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in both models is particularly evident in the western

United States (Fig. 7f), which is consistent with the sys-

tematic model moist bias above 500hPa (which is 3–5km

AGL in the Rocky Mountains) reported by Alexander

et al. (2017).

There are notable differences from the full samples

for both model pairs when the data are stratified by

thermodynamic environment, based here on the ob-

served mixed-layer CAPE with a threshold value of

1000 J kg21 (cf. Figs. 3, 4, and 8). For the NAM and

NAM Nest, both models are characterized by under-

mixing, which is more substantial in the NAMNest than

in the NAM, in the lowest 1–3km AGL (Fig. 8a). Over

this layer, bias magnitude and MAE for both tempera-

ture and dewpoint temperature are significantly smaller

in the NAM compared to the NAM Nest. For the RAP

and HRRR, both models are characterized by dry and

warm biases between 0.5 and 2.5 kmAGL but near-zero

biases below (Fig. 8b). Dewpoint temperature biases

above 3 km AGL are small in both models, likely be-

cause few of the observations in this large-CAPE com-

posite are in theWest. Unlike the NAMandNAMNest,

however, RAP and HRRR model performance is

comparable below 2.5 km AGL in the more unstable

environments considered in this subsample.

b. Derived thermodynamic parameters

As compared to the vertical thermodynamic profile

evaluation, which provides information about error

characteristics for model prognostic variables as a

function of height AGL, the derived thermodynamic

parameter evaluation provides a vertically integrated

(whether explicit or implicit in nature) perspective on

model error characteristics for selected buoyancy-

related parameters. The full-sample bias and MAE for

most-unstable, surface-based, and mixed-layer CAPE,

CIN, LCL, and LFC at 11h (0 and 23h are similar to

those at 11 h and are not shown) for the NAMandNAM

Nest are depicted in Fig. 9 and for the RAP and HRRR

in Fig. 10. As a reminder, note that most-unstable parcel

samples only include those observations where most-

unstable CAPE exceeds surface-based CAPE; thus, the

most-unstable parcels defined in this section are pref-

erentially characterized by elevated instability.

As with the vertical thermodynamic profiles, differ-

ences between the NAM and NAMNest for the derived

thermodynamic parameters considered herein are small

(Fig. 9). However, unlike the vertical thermodynamic

profiles, most derived thermodynamic parameter dif-

ferences are not statistically significant at the 95%

FIG. 6. (a) As in Fig. 3a, but only evaluating 11-h forecast profiles against 0000 UTC rawinsonde observations.

(b) As in (a), but for 1200 UTC rawinsonde observations. (c),(d) As in (a) and (b), but for the RAP and HRRR

model pair.
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significance level. Each error distribution is approxi-

mately normal, albeit with large variation about the

mean and median errors. In their sample means, most-

unstable parcels are unstable biased, surface-based

parcels are near-zero biased, and mixed-layer parcels

are unstable biased, the latter of which likely stems at

least in part from a substantial near-surface moist bias;

Fig. 3b) characteristic of the MYJ planetary boundary

layer parameterization. MAE is generally lowest for

surface-based parcels for all parameters, consistent with

the near-zero surface temperature and dewpoint tem-

perature mean biases for both models (Fig. 3b).

Likewise, derived thermodynamic parameter differ-

ences between the RAP and HRRR are small, albeit

with many that are statistically significant at the 95%

significance level, particularly for surface-based parcels

(Fig. 10). When considering only those parameters for

which statistically significant differences exist, the RAP

MAE and bias are smaller for surface-based parcels and

the HRRRMAE and bias are smaller for most-unstable

and mixed-layer parcels (Fig. 10). However, the practical

(or operational) significance of these differences is ar-

gued to be subjectively low given the small absolute

error differences and approximately normal error dis-

tributions with similar widths between models. The

MAE values, as well as error distribution widths and

shapes, are similar for the RAP and HRRR and the

NAM and NAM Nest for all parameters and parcels

considered (cf. Figs. 9 and 10). On average, both surface-

based and most-unstable parcels are slightly stable bi-

ased in both models for all variables except CIN, which

is believed to result from the models’ dry bias at the

FIG. 7. (a) As in Fig. 3a, but only evaluating 11-h forecast profiles against rawinsonde observations from the

eastern United States (as defined in Fig. 2b). (b) As in (a), but for the RAP and HRRR model pair. (c),(d) As in

(a) and (b), but for the central United States. (e),(f) As in (a) and (b), but for the western United States.
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surface (Fig. 4b). Conversely, mixed-layer parcels are

slightly unstable biased for all variables, which is hy-

pothesized to result from the warm- and moist-biased

planetary boundary layer for both models (Fig. 4b). In

contrast to the NAM and NAM Nest, the mixed-layer

CAPE MAE is smaller than the most-unstable and

surface-based CAPE MAE, likely due to the smaller

moist bias in the planetary boundary layer for the RAP

and HRRR (cf. Figs. 3b and 4b).

As with the vertical thermodynamic profiles, addi-

tional insight into model performance for derived ther-

modynamic parameters can be gained by partitioning

the data. For derived parameters, two partitions are

considered: verification time and geographic region.

For simplicity and given the overall importance of

CAPE in assessing the convective potential, as well as

the general consistency in the results between the pa-

rameters considered (not shown), the results presented

here focus only on most-unstable, surface-based, and

mixed-layer CAPE.

When stratifying by verification time, MAE for the

most-unstable and mixed-layer parcels for all models

considered is smaller at 1200 UTC than at 0000 UTC

(Fig. 11). This is consistent with the vertical thermody-

namic profile verification time stratifications, in which

temperature and dewpoint temperature MAE values

are typically smaller at 1200 UTC than at 0000 UTC for

all models (Fig. 6). For the NAM and NAM Nest, the

mixed-layer CAPE bias is smaller and the error distri-

bution is narrower at 1200 UTC than at 0000 UTC

(Figs. 11a,b), consistent with the smaller near-surface

moist bias in both models in the mechanical-turbulence-

driven planetary boundary layer (Fig. 6b). The positive

most-unstable CAPE bias in the full sample (Fig. 9a)

largely results from observations verifying at 0000 UTC

(Fig. 11a), when elevated instability is infrequent and

the associated sample is small. For the RAP andHRRR,

the most-unstable CAPE error distributions are sub-

stantially less normally distributed, with a number of

large positive errors, at 0000 UTC as compared to

1200 UTC (Figs. 11c,d), although it should be noted that

the most-unstable parcel sample at 0000 UTC is small.

In the geographic region stratification, similar per-

formance characteristics (e.g., mean bias values, error

distribution widths and positions, and MAE values) are

noted for both the eastern and central United States

subcomposites, as seen in the full samples for all models

considered (cf. Figs. 9, 10, and 12a–d). The most sub-

stantial differences are noted in the western United

States, in which surface-based and mixed-layer parcel

MAEs are smaller and the respective error distributions

are narrower than for the corresponding full samples

(cf. Figs. 9, 10, and 12e,f). This may be related to smaller

CAPE magnitudes in the more deeply mixed environ-

ments of the IntermountainWest. For instance, the 90th

percentiles of the observed, postprecipitation filtering,

mixed-layer CAPE distributions are 2630, 2929, and

690 J kg21 for the eastern, central, and western United

States, respectively, in the NAM/NAM Nest samples

and 2522, 3293, and 823 J kg21 in the RAP/HRRR

samples. However, note that the sample sizes in the

western United States are smaller than for other

FIG. 8. (a) As in Fig. 3a, but only evaluating 11-h forecast profiles against rawinsonde observations in which at least

1000 J kg21 mixed-layer CAPE is present. (b) As in (a), but for the RAP and HRRR model pair.
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regions, particularly for the most-unstable parcel sam-

ples, and therefore the uncertainty in this inference is

somewhat high.

4. Conclusions

Utilizing a sample of observed and model-derived

soundings from May 2017 across the conterminous

United States, this study tests the hypothesis that CAMs

are equally skillful as their regional model parents in

forecasting vertical thermodynamic profiles and derived

thermodynamic parameters in early warm-season,

thunderstorm-supporting environments at short lead

times (0–23 h). In a practical sense, and often also in a

statistical sense, CAMs are equally skillful as their closely

related regional counterparts in forecasting vertical ther-

modynamic profile structure and derived thermodynamic

parameters in the preconvective environment. In the cases

FIG. 9. (a) Kernel density estimates of the bias (here defined as modeled minus observed) in the most-unstable,

surface-based, and mixed-layer CAPE (J kg21) for the NAM (blue) and NAM Nest (green) 11-h forecasts. From

bottom (smallest) to top (largest), the dashed lines in each distribution represent its 25th, 50th, and 75th percentiles,

respectively, and stars indicate the MAE. The number of observations n in each sample and the p value from the

two-tailed, nonparametricWilcoxon signed-rank test that the bias distributions are significantly different from each

other (at the 95% significance level) are indicated along the x axis. (b) As in (a), but for CIN. (c) As in (a), but for

LCL (hPa). (d)As in (a), but for LFC (hPa). For CAPE, a parcelmust have nonzeroCAPE to be included; for LFC,

a parcel must have a defined LFC to be included. Note that the most-unstable composite for each variable only

includes observations where the most-unstable CAPE exceeds the surface-based CAPE (i.e., only parcels with

elevated instability).
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where statistically significant forecast skill differences

exist, the NAM is superior to the NAM Nest and the

HRRR is superior to the RAP for vertical thermody-

namic profiles. For derived thermodynamic parameters,

the RAP is superior to the HRRR for surface-based

parcels and the HRRR is superior to the RAP for both

most-unstable and mixed-layer parcels. However, it

should be emphasized that absolute differences be-

tween the regional parent and the CAM in a pair are

small even when statistically significant, such that the

differences are deemed to be negligible from a practical

or operational perspective (see section 2 in Nicholls 2000

for a discussion of this as it relates to the atmospheric

sciences). Further, error distributions are of approxi-

mately equal width between the convection-allowing

and regional models in a pair. This implies that the

small-scale variability represented by the CAMs is not

systematically larger than the regional model forecast

errors over each sample. This is perhaps not surprising

since the verifying rawinsonde observations also sam-

ple local variability (rather than variability on the

scales resolved by regional models), although balloon

drift with altitude, especially in environments charac-

terized by strong winds aloft, can increase uncertainty

about the spatial extent sampled by the rawinsonde.

Overall, these findings lend confidence to using the

NAM Nest and HRRR to evaluate the forecast meso-

scale environment, whether on their native grids or

after applying a short-wavelength filter to emphasize

the larger-scale environment.

FIG. 10. As in Fig. 9, but for the RAP (blue) and HRRR (green) model pair.
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The evaluation presented in this study also provides

insight into model bias characteristics in the warm-

season, thunderstorm-supporting environments con-

sidered herein. For the NAM and NAM Nest, the

undermixing bias of the MYJ planetary boundary

layer parameterization results in cool- and moist-

biased planetary boundary layers and unstable-biased

mixed-layer parcels. These biases are particularly evi-

dent at 0000 UTC, when buoyancy is a significant con-

tributor to vertical mixing, and in the western United

States, where strong sensible heating contributes to

stronger and deeper vertical mixing over the typically

arid Intermountain West. For the RAP and HRRR,

warm and moist biases extend from just above the

surface to at least 5 km AGL, resulting in a small un-

stable bias for mixed-layer parcels. The moist bias is

particularly large above 4 km AGL in the western

United States, which is consistent with internal model

evaluations. In environments with moderate to large

mixed-layer CAPE, both the RAP and HRRR are

characterized by a substantial dry bias between 0.75 and

2.5 km AGL, which could influence entrainment within

model convection. Most-unstable and surface-based

parcels from both models are slightly stable biased,

likely due to the dry bias of each model in the surface

layer. Together, these insights can be used by forecasters

to subjectively bias correct, and thus add value to,

model-derived forecasts.

FIG. 11. (a) As in Fig. 9a, but only evaluating against 0000 UTC rawinsonde observations. (b) As in (a), but only

evaluating against 1200 UTC rawinsonde observations. (c),(d) As in (a) and (b), but for the RAP and HRRR

model pair.
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There are several caveats to the results worth noting.

Although the NAM and NAM Nest remain identically

configured to the versions considered in this study as

of the time of this writing, the operational RAP and

HRRR versions received significant upgrades in July

2018. As part of these upgrades are changes to the

MYNN parameterization, including implementation of

the scale-aware eddy diffusivity-mass flux formulation

of Su�selj et al. (2012), and changes to how pseudo-

observations in the planetary boundary layer (used to

extend the influence of surface observations upward

through the planetary boundary layer in well-mixed en-

vironments; Benjamin et al. 2016, James and Benjamin

2017) are assimilated. Initial tests indicate that these

FIG. 12. (a) As in Fig. 9a, but only evaluating against rawinsonde observations from the eastern United States (as

defined in Fig. 2b). (b)As in (a), but for theRAP andHRRRmodel pair. (c),(d)As in (a) and (b), but for the central

United States. (e),(f) As in (a) and (b), except for the western United States.
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changes result in small but statistically significant re-

ductions in root-mean-square error for vertical thermo-

dynamic environments in warm-season environments

(Alexander et al. 2017, 2018), but further examination is

necessary to quantify the extent to which the results

presented herein may be different in the upgraded

modeling system. Second, this study focused on early

warm-season, thunderstorm-supporting environments

as represented by the May 2017 data sample. Different

results may be obtained for other environments of in-

terest, such as those associated with high fire potential,

frozen precipitation, or cold-season severe weather

events. Related to this, this study only considered one

month of data in a single year. Although the models

analyzed are continually evolving, such that their char-

acteristics are likely to differ at least slightly from year to

year, consideration of a larger data sample is needed to

ensure the generality of the results. Third, SPC evalua-

tion of observed rawinsonde profiles has identified an

occasional discontinuity in dewpoint temperature be-

tween the surface and the overlying atmosphere (e.g.,

Fig. 13). This could result from a mismatch between the

observed surface conditions appended to the lowest ra-

winsonde level and those sampled by the rawinsonde

instrument itself, although this warrants further in-

vestigation. Regardless of its cause, this discontinuity

deleteriously influences surface-based and mixed-layer

derived thermodynamic parameter calculations. It is

uncertain howmany observed rawinsonde profiles in the

May 2017 sample considered in this study exhibit such a

discontinuity, and no attempt is made to account for it in

the evaluations presented herein; thus, some caution is

urged in interpreting the precise bias and MAE values

for each model in the surface layer. Finally, this study

only evaluated vertical thermodynamic profiles as well

as a small selection of derived parameters. Different

insights may be obtained from an evaluation of kine-

matic fields or specific features [e.g., boundary place-

ment, as in Clark et al. (2015), or organized convective

systems, whether the latter are parameterized or ex-

plicitly forecast] in the regional and convection-allowing

model output.

Over the next five years through the Next Generation

Global Prediction System initiative, NCEP plans to

unify its modeling system into a single-model framework

using the Finite Volume on the Cubed Sphere (FV3; Lin

2004; Putman and Lin 2007; Harris and Lin 2013) that is

capable of seamless, skillful prediction from the storm

scale to the climate scale (National Weather Service

2017). As compared to the current operational modeling

suite, only global and convection-allowing models will

likely remain, and regional models such as the NAMand

RAP are planned to be phased out. The results of this

study suggest that existing CAMs can fulfill regional

model roles in SPC operations; however, it is presently

unknown whether this will hold for the FV3 dynamical

FIG. 13. Skew T–logp diagram for the observed 0000 UTC 10 May 2017 North Platte, NE

(LBF), temperature (8C; solid red), dewpoint temperature (8C; solid green), and wind [black

barbs; half barb, 5 kt; full barb, 10 kt; pennant, 50 kt (1 kt ’ 0.51m s21)].
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core. Further, given that the first global FV3 operational

model implementation will utilize the eddy diffusivity–

mass flux turbulent vertical mixing parameterization

(Han et al. 2016) used by the Global Forecast System,

which is known to forecast overly deep turbulent vertical

mixing during the warm-season over land (Weiss et al.

2015), it is unknown whether the initial operational

version of the global FV3 model will be able to fulfill all

regional model roles in SPC operations. Additional re-

search is planned to address these questions.
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